| | |
| | |
Stat |
Members: 3667 Articles: 2'599'751 Articles rated: 2609
08 February 2025 |
|
| | | |
|
Article overview
| |
|
SpECTRE: A Task-based Discontinuous Galerkin Code for Relativistic Astrophysics | Lawrence E. Kidder
; Scott E. Field
; Francois Foucart
; Erik Schnetter
; Saul A. Teukolsky
; Andy Bohn
; Nils Deppe
; Peter Diener
; François Hébert
; Jonas Lippuner
; Jonah Miller
; Christian D. Ott
; Mark A. Scheel
; Trevor Vincent
; | Date: |
1 Sep 2016 | Abstract: | We introduce a new relativistic astrophysics code, SpECTRE, that combines a
discontinuous Galerkin method with a task-based parallelism model. SpECTRE’s
goal is to achieve more accurate solutions for challenging relativistic
astrophysics problems such as core-collapse supernovae and binary neutron star
mergers. The robustness of the discontinuous Galerkin method allows for the use
of high-resolution shock capturing methods in regions where (relativistic)
shocks are found, while exploiting high-order accuracy in smooth regions. A
task-based parallelism model allows efficient use of the largest supercomputers
for problems with a heterogeneous workload over disparate spatial and temporal
scales. We argue that the locality and algorithmic structure of discontinuous
Galerkin methods will exhibit good scalability within a task-based parallelism
framework. We demonstrate the code on a wide variety of challenging benchmark
problems in (non)-relativistic (magneto)-hydrodynamics. We demonstrate the
code’s scalability including its strong scaling on the NCSA Blue Waters
supercomputer up to the machine’s full capacity of 22,380 nodes using 671,400
threads. | Source: | arXiv, 1609.0098 | Services: | Forum | Review | PDF | Favorites |
|
|
No review found.
Did you like this article?
Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.
|
| |
|
|
|