Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3667
Articles: 2'599'751
Articles rated: 2609

15 February 2025
 
  » arxiv » 1609.0119

 Article overview



Geometrically Exact Finite Element Formulations for Curved Slender Beams: Kirchhoff-Love Theory vs. Simo-Reissner Theory
Christoph Meier ; Wolfgang A. Wall ; Alexander Popp ;
Date 1 Sep 2016
AbstractThe present work focuses on geometrically exact finite elements for highly slender beams. It aims at the proposal of novel formulations of Kirchhoff-Love type, a detailed review of existing formulations of Kirchhoff-Love and Simo-Reissner type as well as a careful evaluation and comparison of the proposed and existing formulations. Two different rotation interpolation schemes with strong or weak Kirchhoff constraint enforcement, respectively, as well as two different choices of nodal triad parametrizations in terms of rotation or tangent vectors are proposed. The combination of these schemes leads to four novel finite element variants, all of them based on a C1-continuous Hermite interpolation of the beam centerline. Essential requirements such as representability of general 3D, large-deformation, dynamic problems involving slender beams with arbitrary initial curvatures and anisotropic cross-section shapes or preservation of objectivity and path-independence will be investigated analytically and verified numerically for the different formulations. It will be shown that the geometrically exact Kirchhoff-Love beam elements proposed in this work are the first ones of this type that fulfill all the considered requirements. On the contrary, Simo-Reissner type formulations fulfilling these requirements can be found in the literature very well. However, it will be argued that the shear-free Kirchhoff-Love formulations can provide considerable numerical advantages when applied to highly slender beams. Concretely, several representative numerical test cases confirm that the proposed Kirchhoff-Love formulations exhibit a lower discretization error level as well as a considerably improved nonlinear solver performance in the range of high beam slenderness ratios as compared to two representative Simo-Reissner element formulations from the literature.
Source arXiv, 1609.0119
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.






ScienXe.org
» my Online CV
» Free

home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2025 - Scimetrica