Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3667
Articles: 2'599'751
Articles rated: 2609

09 February 2025
 
  » arxiv » 1609.0136

 Article overview



Spontaneous orbital-selective Mott transitions and the Jahn-Teller metal of A$_3$C$_{60}$
Shintaro Hoshino ; Philipp Werner ;
Date 1 Sep 2016
AbstractThe alkali-doped fullerides A$_3$C$_{60}$ are half-filled three-orbital Hubbard systems which exhibit an unconventional superconducting phase next to a Mott insulator. While the pairing is understood to arise from an effectively negative Hund coupling, the highly unusual Jahn-Teller metal near the Mott transition, featuring both localized and itinerant electrons, has not been understood. This property is consistently explained by a previously unrecognized phenomenon: the spontaneous transition of multiorbital systems with negative Hund coupling into an orbital-selective Mott state. This symmetry-broken state, which has no ordinary orbital moment, is characterized by an orbital-dependent two-body operator (the double occupancy) or an orbital-dependent kinetic energy, and may be regarded as a diagonal-order version of odd-frequency superconductivity. We propose that the recently discovered Jahn-Teller metal phase of Rb$_x$Cs$_{3-x}$C$_{60}$ is an experimental realization of this novel state of matter.
Source arXiv, 1609.0136
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.






ScienXe.org
» my Online CV
» Free

home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2025 - Scimetrica