Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3669
Articles: 2'599'751
Articles rated: 2609

16 March 2025
 
  » arxiv » 1609.1165

 Article overview



Integral estimation based on Markovian design
Romain Azaïs ; Bernard Delyon ; François Portier ;
Date 5 Sep 2016
AbstractSuppose that a mobile sensor describes a Markovian trajectory in the ambient space. At each time the sensor measures an attribute of interest, e.g., the temperature. Using only the location history of the sensor and the associated measurements, the aim is to estimate the average value of the attribute over the space. In contrast to classical probabilistic integration methods, e.g., Monte Carlo, the proposed approach does not require any knowledge on the distribution of the sensor trajectory. Probabilistic bounds on the convergence rates of the estimator are established. These rates are better than the traditional "root n"-rate, where n is the sample size, attached to other probabilistic integration methods. For finite sample sizes, the good behaviour of the procedure is demonstrated through simulations and an application to the evaluation of the average temperature of oceans is considered.
Source arXiv, 1609.1165
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.






ScienXe.org
» my Online CV
» Free

home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2025 - Scimetrica