Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3669
Articles: 2'599'751
Articles rated: 2609

18 March 2025
 
  » arxiv » 1609.1254

 Article overview



Gradient flow and entropy inequalities for quantum Markov semigroups with detailed balance
Eric A. Carlen ; Jan Maas ;
Date 5 Sep 2016
AbstractWe study a class of ergodic quantum Markov semigroups on finite-dimensional unital $C^*$-algebras. These semigroups have a unique stationary state $sigma$, and we are concerned with those that satisfy a quantum detailed balance condition with respect to $sigma$. We show that the evolution on the set of states that is given by such a quantum Markov semigroup is gradient flow for the relative entropy with respect to $sigma$ in a particular Riemannian metric on the set of states. This metric is a non-commutative analog of the $2$-Wasserstein metric, and in several interesting cases we are able to show, in analogy with work of Otto on gradient flows with respect to the classical $2$-Wasserstein metric, that the relative entropy is strictly and uniformly convex with respect to the Riemannian metric introduced here. As a consequence, we obtain a number of new inequalities for the decay of relative entropy for ergodic quantum Markov semigroups with detailed balance.
Source arXiv, 1609.1254
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.






ScienXe.org
» my Online CV
» Free

home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2025 - Scimetrica