Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3669
Articles: 2'599'751
Articles rated: 2609

24 March 2025
 
  » arxiv » 2201.00135

 Article overview



Geometric Complexity Theory -- Lie Algebraic Methods for Projective Limits of Stable Points
Bharat Adsul ; Milind Sohoni ; K V Subrahmanyam ;
Date 1 Jan 2022
AbstractLet $G$ be a connected reductive group acting on a complex vector space $V$ and projective space ${mathbb P}V$. Let $xin V$ and ${cal H}subseteq {cal G}$ be the Lie algebra of its stabilizer. Our objective is to understand points $[y]$, and their stabilizers which occur in the vicinity of $[x]$. We construct an explicit ${cal G}$-action on a suitable neighbourhood of $x$, which we call the local model at $x$. We show that Lie algebras of stabilizers of points in the vicinity of $x$ are parameterized by subspaces of ${cal H}$. When ${cal H}$ is reductive these are Lie subalgebras of ${cal H}$. If the orbit of $x$ is closed this also follows from Luna’s theorem. Our construction involves a map connected to the local curvature form at $x$. We apply the local model to forms, when the form $g$ is obtained from the form $f$ as the leading term of a one parameter family acting on $f$. We show that there is a flattening ${cal K}_0$ of ${cal K}$, the stabilizer of $f$ which sits as a subalgebra of ${cal H}$, the stabilizer $g$. We specialize to the case of forms $f$ whose $SL(X)$-orbits are affine, and the orbit of $g$ is of co-dimension $1$. We show that (i) either ${cal H}$ has a very simple structure, or (ii) conjugates of the elements of ${cal K}$ also stabilize $g$ and the tangent of exit. Next, we apply this to the adjoint action. We show that for a general matrix $X$, the signatures of nilpotent matrices in its projective orbit closure (under conjugation) are determined by the multiplicity data of the spectrum of $X$. Finally, we formulate the path problem of finding paths with specific properties from $y$ to its limit points $x$ as an optimization problem using local differential geometry. Our study is motivated by Geometric Complexity Theory proposed by the second author and Ketan Mulmuley.
Source arXiv, 2201.00135
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.






ScienXe.org
» my Online CV
» Free

home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2025 - Scimetrica