Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3669
Articles: 2'599'751
Articles rated: 2609

24 March 2025
 
  » arxiv » 2201.00139

 Article overview



On the improved conditions for some primal-dual algorithms
Yao Li ; Ming Yan ;
Date 1 Jan 2022
AbstractThe convex minimization of $f(mathbf{x})+g(mathbf{x})+h(mathbf{A}mathbf{x})$ over $mathbb{R}^n$ with differentiable $f$ and linear operator $mathbf{A}: mathbb{R}^n ightarrow mathbb{R}^m$, has been well-studied in the literature. By considering the primal-dual optimality of the problem, many algorithms are proposed from different perspectives such as monotone operator scheme and fixed point theory. In this paper, we start with a base algorithm to reveal the connection between several algorithms such as AFBA, PD3O and Chambolle-Pock. Then, we prove its convergence under a relaxed assumption associated with the linear operator and characterize the general constraint on primal and dual stepsizes. The result improves the upper bound of stepsizes of AFBA and indicates that Chambolle-Pock, as the special case of the base algorithm when $f=0$, can take the stepsize of the dual iteration up to $4/3$ of the previously proven one.
Source arXiv, 2201.00139
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.






ScienXe.org
» my Online CV
» Free

home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2025 - Scimetrica