Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3669
Articles: 2'599'751
Articles rated: 2609

16 March 2025
 
  » arxiv » 2201.00143

 Article overview



Large deviations principle for stochastic delay differential equations with super-linearly growing coefficients
Diancong Jin ; Ziheng Chen ; Tau Zhou ;
Date 1 Jan 2022
AbstractWe utilize the weak convergence method to establish the Freidlin--Wentzell large deviations principle (LDP) for stochastic delay differential equations (SDDEs) with super-linearly growing coefficients, which covers a large class of cases with non-globally Lipschitz coefficients. The key ingredient in our proof is the uniform moment estimate of the controlled equation, where we handle the super-linear growth of the coefficients by an iterative argument. Our results allow both the drift and diffusion coefficients of the considered equations to super-linearly grow not only with respect to the delay variable but also to the state variable. This work extends the existing results which develop the LDPs for SDDEs with super-linearly growing coefficients only with respect to the delay variable.
Source arXiv, 2201.00143
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.






ScienXe.org
» my Online CV
» Free

home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2025 - Scimetrica