Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3657
Articles: 2'599'751
Articles rated: 2609

06 October 2024
 
  » arxiv » 2206.00128

 Article overview



ForestPrune: Compact Depth-Controlled Tree Ensembles
Brian Liu ; Rahul Mazumder ;
Date 1 Jun 2022
AbstractTree ensembles are versatile supervised learning algorithms that achieve state-of-the-art performance. These models are extremely powerful but can grow to enormous sizes. As a result, tree ensembles are often post-processed to reduce memory footprint and improve interpretability. In this paper, we present ForestPrune, a novel optimization framework that can post-process tree ensembles by pruning depth layers from individual trees. We also develop a new block coordinate descent method to efficiently obtain high-quality solutions to optimization problems under this framework. The number of nodes in a decision tree increases exponentially with tree depth, so pruning deep trees can drastically improve model parsimony. ForestPrune can substantially reduce the space complexity of an ensemble for a minimal cost to performance. The framework supports various weighting schemes and contains just a single hyperparameter to tune. In our experiments, we observe that ForestPrune can reduce model size 20-fold with negligible performance loss.
Source arXiv, 2206.00128
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.






ScienXe.org
» my Online CV
» Free

home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica