Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3657
Articles: 2'599'751
Articles rated: 2609

14 October 2024
 
  » arxiv » 2206.00141

 Article overview



Extended depth-of-field light-sheet microscopy improves imaging of large volumes at high numerical aperture
Kevin Keomanee-Dizon ; Matt Jones ; Peter Luu ; Scott E. Fraser ; Thai V. Truong ;
Date 1 Jun 2022
AbstractLight-sheet microscopes must compromise between field of view, optical sectioning, resolution, and detection efficiency. High-numerical-aperture (NA) detection objective lenses provide high resolution but their narrow depth of field fails to capture effectively the fluorescence signal generated by the illumination light sheets, in imaging large volumes. Here, we present ExD-SPIM (extended depth-of-field selective-plane illumination microscopy), an improved light-sheet microscopy strategy that solves this limitation by extending the depth of field (DOF) of high-NA detection objectives to match the thickness of the illumination light sheet. This extension of the DOF uses a phase mask to axially stretch the point-spread function of the objective lens while largely preserving lateral resolution. This matching of the detection DOF to the illumination-sheet thickness increases total fluorescence collection, reduces background, and improves the overall signal-to-noise ratio (SNR). We demonstrate, through numerical simulations and imaging of bead phantoms as well as living animals, that ExD-SPIM increases the SNR by more than three-fold and dramatically reduces the rate of fluorescence photobleaching, when compared to a low-NA system with an equivalent depth of field. Compared to conventional high-NA detection, ExD-SPIM improves the signal sensitivity and volumetric coverage of whole-brain activity imaging, increasing the number of detected neurons by over a third.
Source arXiv, 2206.00141
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.






ScienXe.org
» my Online CV
» Free

home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica