Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3657
Articles: 2'599'751
Articles rated: 2609

09 October 2024
 
  » arxiv » 2206.00147

 Article overview



Unbiased Implicit Feedback via Bi-level Optimization
Can Chen ; Chen Ma ; Xi Chen ; Sirui Song ; Hao Liu ; Xue Liu ;
Date 1 Jun 2022
AbstractImplicit feedback is widely leveraged in recommender systems since it is easy to collect and provides weak supervision signals. Recent works reveal a huge gap between the implicit feedback and user-item relevance due to the fact that implicit feedback is also closely related to the item exposure. To bridge this gap, existing approaches explicitly model the exposure and propose unbiased estimators to improve the relevance. Unfortunately, these unbiased estimators suffer from the high gradient variance, especially for long-tail items, leading to inaccurate gradient updates and degraded model performance. To tackle this challenge, we propose a low-variance unbiased estimator from a probabilistic perspective, which effectively bounds the variance of the gradient. Unlike previous works which either estimate the exposure via heuristic-based strategies or use a large biased training set, we propose to estimate the exposure via an unbiased small-scale validation set. Specifically, we first parameterize the user-item exposure by incorporating both user and item information, and then construct an unbiased validation set from the biased training set. By leveraging the unbiased validation set, we adopt bi-level optimization to automatically update exposure-related parameters along with recommendation model parameters during the learning. Experiments on two real-world datasets and two semi-synthetic datasets verify the effectiveness of our method.
Source arXiv, 2206.00147
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.






ScienXe.org
» my Online CV
» Free

home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica