Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3657
Articles: 2'599'751
Articles rated: 2609

14 October 2024
 
  » arxiv » 2206.00151

 Article overview



DotMat: Solving Cold-start Problem and Alleviating Sparsity Problem for Recommender Systems
Hao Wang ;
Date 1 Jun 2022
AbstractCold-start and sparsity problem are two key intrinsic problems to recommender systems. During the past two decades, researchers and industrial practitioners have spent considerable amount of efforts trying to solve the problems. However, for cold-start problem, most research relies on importing side information to transfer knowledge. A notable exception is ZeroMat, which uses no extra input data. Sparsity is a lesser noticed problem. In this paper, we propose a new algorithm named DotMat that relies on no extra input data, but is capable of solving cold-start and sparsity problems. In experiments, we prove that like ZeroMat, DotMat can achieve competitive results with recommender systems with full data, such as the classic matrix factorization algorithm.
Source arXiv, 2206.00151
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.






ScienXe.org
» my Online CV
» Free

home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica