Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3657
Articles: 2'599'751
Articles rated: 2609

06 October 2024
 
  » arxiv » 2206.00181

 Article overview



Labeling Where Adapting Fails: Cross-Domain Semantic Segmentation with Point Supervision via Active Selection
Fei Pan ; Francois Rameau ; In So Kweon ;
Date 1 Jun 2022
AbstractTraining models dedicated to semantic segmentation requires a large amount of pixel-wise annotated data. Due to their costly nature, these annotations might not be available for the task at hand. To alleviate this problem, unsupervised domain adaptation approaches aim at aligning the feature distributions between the labeled source and the unlabeled target data. While these strategies lead to noticeable improvements, their effectiveness remains limited. To guide the domain adaptation task more efficiently, previous works attempted to include human interactions in this process under the form of sparse single-pixel annotations in the target data. In this work, we propose a new domain adaptation framework for semantic segmentation with annotated points via active selection. First, we conduct an unsupervised domain adaptation of the model; from this adaptation, we use an entropy-based uncertainty measurement for target points selection. Finally, to minimize the domain gap, we propose a domain adaptation framework utilizing these target points annotated by human annotators. Experimental results on benchmark datasets show the effectiveness of our methods against existing unsupervised domain adaptation approaches. The propose pipeline is generic and can be included as an extra module to existing domain adaptation strategies.
Source arXiv, 2206.00181
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.






ScienXe.org
» my Online CV
» Free

home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica