Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3657
Articles: 2'599'751
Articles rated: 2609

06 October 2024
 
  » arxiv » 2206.00205

 Article overview



CAFA: Class-Aware Feature Alignment for Test-Time Adaptation
Sanghun Jung ; Jungsoo Lee ; Nanhee Kim ; Jaegul Choo ;
Date 1 Jun 2022
AbstractDespite recent advancements in deep learning, deep networks still suffer from performance degradation when they face new and different data from their training distributions. Addressing such a problem, test-time adaptation (TTA) aims to adapt a model to unlabeled test data on test time while making predictions simultaneously. TTA applies to pretrained networks without modifying their training procedures, which enables to utilize the already well-formed source distribution for adaptation. One possible approach is to align the representation space of test samples to the source distribution ( extit{i.e.,} feature alignment). However, performing feature alignments in TTA is especially challenging in that the access to labeled source data is restricted during adaptation. That is, a model does not have a chance to learn test data in a class-discriminative manner, which was feasible in other adaptation tasks ( extit{e.g.,} unsupervised domain adaptation) via supervised loss on the source data. Based on such an observation, this paper proposes emph{a simple yet effective} feature alignment loss, termed as Class-Aware Feature Alignment (CAFA), which 1) encourages a model to learn target representations in a class-discriminative manner and 2) effectively mitigates the distribution shifts in test time, simultaneously. Our method does not require any hyper-parameters or additional losses, which are required in the previous approaches. We conduct extensive experiments and show our proposed method consistently outperforms existing baselines.
Source arXiv, 2206.00205
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.






ScienXe.org
» my Online CV
» Free

home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica