Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3657
Articles: 2'599'751
Articles rated: 2609

14 October 2024
 
  » arxiv » 2206.00222

 Article overview



Cross-domain Detection Transformer based on Spatial-aware and Semantic-aware Token Alignment
Jinhong Deng ; Xiaoyue Zhang ; Wen Li ; Lixin Duan ;
Date 1 Jun 2022
AbstractDetection transformers like DETR have recently shown promising performance on many object detection tasks, but the generalization ability of those methods is still quite challenging for cross-domain adaptation scenarios. To address the cross-domain issue, a straightforward way is to perform token alignment with adversarial training in transformers. However, its performance is often unsatisfactory as the tokens in detection transformers are quite diverse and represent different spatial and semantic information. In this paper, we propose a new method called Spatial-aware and Semantic-aware Token Alignment (SSTA) for cross-domain detection transformers. In particular, we take advantage of the characteristics of cross-attention as used in detection transformer and propose the spatial-aware token alignment (SpaTA) and the semantic-aware token alignment (SemTA) strategies to guide the token alignment across domains. For spatial-aware token alignment, we can extract the information from the cross-attention map (CAM) to align the distribution of tokens according to their attention to object queries. For semantic-aware token alignment, we inject the category information into the cross-attention map and construct domain embedding to guide the learning of a multi-class discriminator so as to model the category relationship and achieve category-level token alignment during the entire adaptation process. We conduct extensive experiments on several widely-used benchmarks, and the results clearly show the effectiveness of our proposed method over existing state-of-the-art baselines.
Source arXiv, 2206.00222
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.






ScienXe.org
» my Online CV
» Free

home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica