Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3657
Articles: 2'599'751
Articles rated: 2609

09 October 2024
 
  » arxiv » 2206.00228

 Article overview



Lower and Upper Bounds for Numbers of Linear Regions of Graph Convolutional Networks
Hao Chen ; Yu Guang Wang ; Huan Xiong ;
Date 1 Jun 2022
AbstractThe research for characterizing GNN expressiveness attracts much attention as graph neural networks achieve a champion in the last five years. The number of linear regions has been considered a good measure for the expressivity of neural networks with piecewise linear activation. In this paper, we present some estimates for the number of linear regions of the classic graph convolutional networks (GCNs) with one layer and multiple-layer scenarios. In particular, we obtain an optimal upper bound for the maximum number of linear regions for one-layer GCNs, and the upper and lower bounds for multi-layer GCNs. The simulated estimate shows that the true maximum number of linear regions is possibly closer to our estimated lower bound. These results imply that the number of linear regions of multi-layer GCNs is exponentially greater than one-layer GCNs per parameter in general. This suggests that deeper GCNs have more expressivity than shallow GCNs.
Source arXiv, 2206.00228
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.






ScienXe.org
» my Online CV
» Free

home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica