Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3657
Articles: 2'599'751
Articles rated: 2609

06 October 2024
 
  » arxiv » 2206.00231

 Article overview



On Approximations of Data-Driven Chance Constrained Programs over Wasserstein Balls
Zhi Chen ; Daniel Kuhn ; Wolfram Wiesemann ;
Date 1 Jun 2022
AbstractDistributionally robust chance constrained programs minimize a deterministic cost function subject to the satisfaction of one or more safety conditions with high probability, given that the probability distribution of the uncertain problem parameters affecting the safety condition(s) is only known to belong to some ambiguity set. We study two popular approximation schemes for distributionally robust chance constrained programs over Wasserstein balls, where the ambiguity set contains all probability distributions within a certain Wasserstein distance to a reference distribution. The first approximation replaces the chance constraint with a bound on the conditional value-at-risk, whereas the second approximation decouples different safety conditions via Bonferroni’s inequality. We show that the conditional value-at-risk approximation can be characterized as a tight convex approximation, which complements earlier findings on classical (non-robust) chance constraints, and we offer a novel interpretation in terms of transportation savings. We also show that the two approximation schemes can both perform arbitrarily poorly in data-driven settings, and that they are generally incomparable with each other -- in contrast to earlier results for moment-based ambiguity sets.
Source arXiv, 2206.00231
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.






ScienXe.org
» my Online CV
» Free

home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica