Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3657
Articles: 2'599'751
Articles rated: 2609

08 October 2024
 
  » arxiv » 2206.00238

 Article overview



Transferable Reward Learning by Dynamics-Agnostic Discriminator Ensemble
Fan-Ming Luo ; Xingchen Cao ; Yang Yu ;
Date 1 Jun 2022
AbstractInverse reinforcement learning (IRL) recovers the underlying reward function from expert demonstrations. A generalizable reward function is even desired as it captures the fundamental motivation of the expert. However, classical IRL methods can only recover reward functions coupled with the training dynamics, thus are hard to generalize to a changed environment. Previous dynamics-agnostic reward learning methods have strict assumptions, such as that the reward function has to be state-only. This work proposes a general approach to learn transferable reward functions, Dynamics-Agnostic Discriminator-Ensemble Reward Learning (DARL). Following the adversarial imitation learning (AIL) framework, DARL learns a dynamics-agnostic discriminator on a latent space mapped from the original state-action space. The latent space is learned to contain the least information of the dynamics. Moreover, to reduce the reliance of the discriminator on policies, the reward function is represented as an ensemble of the discriminators during training. We assess DARL in four MuJoCo tasks with dynamics transfer. Empirical results compared with the state-of-the-art AIL methods show that DARL can learn a reward that is more consistent with the true reward, thus obtaining higher environment returns.
Source arXiv, 2206.00238
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.






ScienXe.org
» my Online CV
» Free

home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica