Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3657
Articles: 2'599'751
Articles rated: 2609

06 October 2024
 
  » arxiv » 2206.00246

 Article overview



Optimize cooling-by-measurement by reinforcement learning
Jia-shun Yan ; Jun Jing ;
Date 1 Jun 2022
AbstractCooling by the conditional measurement demonstrates a transparent advantage over that by the unconditional counterpart on the average-population-reduction rate. This advantage, however, is blemished by few percentage of the successful probability of finding the detector system in the measured state. In this work, we propose an optimized architecture to cool down a target resonator, which is initialized as a thermal state, using an interpolation of the conditional and unconditional measurement strategies. Analogous to the conditional measurement, an optimal measurement-interval $ au_{ m opt}^u$ for the unconditional (nonselective) measurement is analytically found for the first time, which is inversely proportional to the collective dominant Rabi frequency $Omega_{d}$ as a function of the resonator’s population at the end of the last round. A cooling algorithm under the global optimization by the reinforcement learning results in the maximum value for the cooperative cooling performance, an indicator function to quantify the comprehensive cooling efficiency for arbitrary cooling-by-measurement architecture. In particular, the average population of the target resonator under only $16$ rounds of measurements can be reduced by over four orders in magnitude with a successful probability about $30\%$.
Source arXiv, 2206.00246
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.






ScienXe.org
» my Online CV
» Free

home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica