Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3657
Articles: 2'599'751
Articles rated: 2609

14 October 2024
 
  » arxiv » 2206.00263

 Article overview



PiDRAM: An FPGA-based Framework for End-to-end Evaluation of Processing-in-DRAM Techniques
Ataberk Olgun ; Juan Gomez Luna ; Konstantinos Kanellopoulos ; Behzad Salami ; Hasan Hassan ; Oguz Ergin ; Onur Mutlu ;
Date 1 Jun 2022
AbstractDRAM-based main memory is used in nearly all computing systems as a major component. One way of overcoming the main memory bottleneck is to move computation near memory, a paradigm known as processing-in-memory (PiM). Recent PiM techniques provide a promising way to improve the performance and energy efficiency of existing and future systems at no additional DRAM hardware cost.
We develop the Processing-in-DRAM (PiDRAM) framework, the first flexible, end-to-end, and open source framework that enables system integration studies and evaluation of real PiM techniques using real DRAM chips. We demonstrate a prototype of PiDRAM on an FPGA-based platform (Xilinx ZC706) that implements an open-source RISC-V system (Rocket Chip). To demonstrate the flexibility and ease of use of PiDRAM, we implement two PiM techniques: (1) RowClone, an in-DRAM copy and initialization mechanism (using command sequences proposed by ComputeDRAM), and (2) D-RaNGe, an in-DRAM true random number generator based on DRAM activation-latency failures.
Our end-to-end evaluation of RowClone shows up to 14.6X speedup for copy and 12.6X initialization operations over CPU copy (i.e., conventional memcpy) and initialization (i.e., conventional calloc) operations. Our implementation of D-RaNGe provides high throughput true random numbers, reaching 8.30 Mb/s throughput. Over the Verilog and C++ basis provided by PiDRAM, implementing the required hardware and software components, implementing RowClone end-to-end takes 198 (565) and implementing D-RaNGe end-to-end takes 190 (78) lines of Verilog (C++) code. PiDRAM is open sourced on Github: this https URL
Source arXiv, 2206.00263
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.






ScienXe.org
» my Online CV
» Free

home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica