Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3657
Articles: 2'599'751
Articles rated: 2609

14 October 2024
 
  » arxiv » 2206.00282

 Article overview



Needle In A Haystack, Fast: Benchmarking Image Perceptual Similarity Metrics At Scale
Cyril Vallez ; Andrei Kucharavy ; Ljiljana Dolamic ;
Date 1 Jun 2022
AbstractThe advent of the internet, followed shortly by the social media made it ubiquitous in consuming and sharing information between anyone with access to it. The evolution in the consumption of media driven by this change, led to the emergence of images as means to express oneself, convey information and convince others efficiently. With computer vision algorithms progressing radically over the last decade, it is become easier and easier to study at scale the role of images in the flow of information online. While the research questions and overall pipelines differ radically, almost all start with a crucial first step - evaluation of global perceptual similarity between different images. That initial step is crucial for overall pipeline performance and processes most images. A number of algorithms are available and currently used to perform it, but so far no comprehensive review was available to guide the choice of researchers as to the choice of an algorithm best suited to their question, assumptions and computational resources. With this paper we aim to fill this gap, showing that classical computer vision methods are not necessarily the best approach, whereas a pair of relatively little used methods - Dhash perceptual hash and SimCLR v2 ResNets achieve excellent performance, scale well and are computationally efficient.
Source arXiv, 2206.00282
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.






ScienXe.org
» my Online CV
» Free

home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica