Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3657
Articles: 2'599'751
Articles rated: 2609

14 October 2024
 
  » arxiv » 2206.00303

 Article overview



Predecessor Features
Duncan Bailey ; Marcelo Mattar ;
Date 1 Jun 2022
AbstractAny reinforcement learning system must be able to identify which past events contributed to observed outcomes, a problem known as credit assignment. A common solution to this problem is to use an eligibility trace to assign credit to recency-weighted set of experienced events. However, in many realistic tasks, the set of recently experienced events are only one of the many possible action events that could have preceded the current outcome. This suggests that reinforcement learning can be made more efficient by allowing credit assignment to any viable preceding state, rather than only those most recently experienced. Accordingly, we propose "Predecessor Features", an algorithm that achieves this richer form of credit assignment. By maintaining a representation that approximates the expected sum of past occupancies, our algorithm allows temporal difference (TD) errors to be propagated accurately to a larger number of predecessor states than conventional methods, greatly improving learning speed. Our algorithm can also be naturally extended from tabular state representation to feature representations allowing for increased performance on a wide range of environments. We demonstrate several use cases for Predecessor Features and contrast its performance with other similar approaches.
Source arXiv, 2206.00303
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.






ScienXe.org
» my Online CV
» Free

home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica