Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3657
Articles: 2'599'751
Articles rated: 2609

06 October 2024
 
  » arxiv » 2206.00305

 Article overview



Supervised Denoising of Diffusion-Weighted Magnetic Resonance Images Using a Convolutional Neural Network and Transfer Learning
Jakub Jurek ; Andrzej Materka ; Kamil Ludwisiak ; Agata Majos ; Kamil Gorczewski ; Kamil Cepuch ; Agata Zawadzka ;
Date 1 Jun 2022
AbstractIn this paper, we propose a method for denoising diffusion-weighted images (DWI) of the brain using a convolutional neural network trained on realistic, synthetic MR data. We compare our results to averaging of repeated scans, a widespread method used in clinics to improve signal-to-noise ratio of MR images. To obtain training data for transfer learning, we model, in a data-driven fashion, the effects of echo-planar imaging (EPI): Nyquist ghosting and ramp sampling. We introduce these effects to the digital phantom of brain anatomy (BrainWeb). Instead of simulating pseudo-random noise with a defined probability distribution, we perform noise scans with a brain-DWI-designed protocol to obtain realistic noise maps. We combine them with the simulated, noise-free EPI images. We also measure the Point Spread Function in a DW image of an AJR-approved geometrical phantom and inter-scan movement in a brain scan of a healthy volunteer. Their influence on image denoising and averaging of repeated images is investigated at different signal-to-noise ratio levels. Denoising performance is evaluated quantitatively using the simulated EPI images and qualitatively in real EPI DWI of the brain. We show that the application of our method allows for a significant reduction in scan time by lowering the number of repeated scans. Visual comparisons made in the acquired brain images indicate that the denoised single-repetition images are less noisy than multi-repetition averaged images. We also analyse the convolutional neural network denoiser and point out the challenges accompanying this denoising method.
Source arXiv, 2206.00305
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.






ScienXe.org
» my Online CV
» Free

home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica