Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3657
Articles: 2'599'751
Articles rated: 2609

15 October 2024
 
  » arxiv » 2206.00325

 Article overview



LDoS attack detection method based on traffic time-frequency characteristics
Yu Fu ; Xueyuan Duan ; Kun Wang ; Bin Li ;
Date 1 Jun 2022
AbstractFor the traditional denial-of-service attack detection methods have complex algorithms and high computational overhead, which are difficult to meet the demand of online detection; and the experimental environment is mostly a simulation platform, which is difficult to deploy in real network environment, we propose a real network environment-oriented LDoS attack detection method based on the time-frequency characteristics of traffic data. All the traffic data flowing through the Web server is obtained through the acquisition storage system, and the detection data set is constructed using pre-processing; the simple features of the flow fragments are used as input, and the deep neural network is used to learn the time-frequency domain features of normal traffic features and generate reconstructed sequences, and the LDoS attack is discriminated based on the differences between the reconstructed sequences and the input data in the time-frequency domain. The experimental results show that the proposed method can accurately detect the attack features in the flow fragments in a very short time and achieve high detection accuracy for complex and diverse LDoS attacks; since only the statistical features of the packets are used, there is no need to parse the packet data, which can be adapted to different network environments.
Source arXiv, 2206.00325
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.






ScienXe.org
» my Online CV
» Free

home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica