Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3658
Articles: 2'599'751
Articles rated: 2609

03 November 2024
 
  » arxiv » 2206.00851

 Article overview



Finite Element Complexes in Two Dimensions
Long Chen ; Xuehai Huang ;
Date 2 Jun 2022
AbstractTwo-dimensional finite element complexes with various smoothness, including the de Rham complex, the curldiv complex, the elasticity complex, and the divdiv complex, are systematically constructed in this work. First smooth scalar finite elements in two dimensions are developed based on a non-overlapping decomposition of the simplicial lattice and the Bernstein basis of the polynomial space. Smoothness at vertices is more than doubled than that at edges. Then the finite element de Rham complexes with various smoothness are devised using smooth finite elements with smoothness parameters satisfying certain relations. Finally, finite element elasticity complexes and finite element divdiv complexes are derived from finite element de Rham complexes by using the Bernstein-Gelfand-Gelfand (BGG) framework. Additionally, some finite element divdiv complexes are constructed without BGG framework. Dimension count plays an important role for verifying the exactness of two-dimensional finite element complexes.
Source arXiv, 2206.00851
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.






ScienXe.org
» my Online CV
» Free

home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica