Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3658
Articles: 2'599'751
Articles rated: 2609

02 November 2024
 
  » arxiv » 2206.01109

 Article overview



Game-theoretic Utility Tree for Multi-Robot Cooperative Pursuit Strategy
Qin Yang ; Ramviyas Parasuraman ;
Date 2 Jun 2022
AbstractUnderlying relationships among multiagent systems (MAS) in hazardous scenarios can be represented as game-theoretic models. In adversarial environments, the adversaries can be intentional or unintentional based on their needs and motivations. Agents will adopt suitable decision-making strategies to maximize their current needs and minimize their expected costs. This paper proposes and extends the new hierarchical network-based model, termed Game-theoretic Utility Tree (GUT), to arrive at a cooperative pursuit strategy to catch an evader in the Pursuit-Evasion game domain. We verify and demonstrate the performance of the proposed method using the Robotarium platform compared to the conventional constant bearing (CB) and pure pursuit (PP) strategies. The experiments demonstrated the effectiveness of the GUT, and the performances validated that the GUT could effectively organize cooperation strategies, helping the group with fewer advantages achieve higher performance.
Source arXiv, 2206.01109
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.






ScienXe.org
» my Online CV
» Free

home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica