Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3669
Articles: 2'599'751
Articles rated: 2609

24 March 2025
 
  » arxiv » 2208.00541

 Article overview



On the reconstruction of unknown driving forces from low-mode observations in the 2D Navier-Stokes Equations
Vincent R. Martinez ;
Date 1 Aug 2022
AbstractThis article is concerned with the problem of determining an unknown source of non-potential, external time-dependent perturbations of an incompressible fluid from large-scale observations on the flow field. A relaxation-based approach is proposed for accomplishing this, which leverages a nonlinear property of the equations of motions to asymptotically enslave small scales to large scales. In particular, an algorithm is introduced that systematically produces approximations of the flow field on the unobserved scales in order to generate an approximation to the unknown force; the process is then repeated to generate an improved approximation of the unobserved scales, and so on. A mathematical proof of convergence of this algorithm is established in the context of the two-dimensional Navier-Stokes equations with periodic boundary conditions under the assumption that the force belongs to the observational subspace of phase space; at each stage in the algorithm, it is shown that the model error, represented as the difference between the approximating and true force, asymptotically decrements to zero in a geometric fashion provided that sufficiently many scales are observed and certain parameters of the algorithm are appropriately tuned; the issue of the sharpness of the assumptions, among other practical considerations such as the transient periods between updates, are also discussed.
Source arXiv, 2208.00541
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.






ScienXe.org
» my Online CV
» Free

home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2025 - Scimetrica