Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3669
Articles: 2'599'751
Articles rated: 2609

24 March 2025
 
  » arxiv » 2208.00603

 Article overview



Weighted Scaling Approach for Metabolomics Data Analysis
Biplab Biswas ; Nishith Kumar ; Md Aminul Hoque ; Md Ashad Alam ;
Date 1 Aug 2022
AbstractSystematic variation is a common issue in metabolomics data analysis. Therefore, different scaling and normalization techniques are used to preprocess the data for metabolomics data analysis. Although several scaling methods are available in the literature, however, choice of scaling, transformation and/or normalization technique influence the further statistical analysis. It is challenging to choose the appropriate scaling technique for downstream analysis to get accurate results or to make a proper decision. Moreover, the existing scaling techniques are sensitive to outliers or extreme values. To fill the gap, our objective is to introduce a robust scaling approach that is not influenced by outliers as well as provides more accurate results for downstream analysis. Here, we introduced a new weighted scaling approach that is robust against outliers however, where no additional outlier detection/treatment step is needed in data preprocessing and also compared it with the conventional scaling and normalization techniques through artificial and real metabolomics datasets. We evaluated the performance of the proposed method in comparison to the other existing conventional scaling techniques using metabolomics data analysis in both the absence and presence of different percentages of outliers. Results show that in most cases, the proposed scaling technique performs better than the traditional scaling methods in both the absence and presence of outliers. The proposed method improves the further downstream metabolomics analysis. The R function of the proposed robust scaling method is available at this https URL
Source arXiv, 2208.00603
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.






ScienXe.org
» my Online CV
» Free

home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2025 - Scimetrica