Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3669
Articles: 2'599'751
Articles rated: 2609

16 March 2025
 
  » arxiv » 2208.00664

 Article overview



A Cahn-Hilliard system with forward-backward dynamic boundary condition and non-smooth potentials
Pierluigi Colli ; Takeshi Fukao ; Luca Scarpa ;
Date 1 Aug 2022
AbstractA system with equation and dynamic boundary condition of Cahn-Hilliard type is considered. This system comes from a derivation performed in Liu-Wu (Arch. Ration. Mech. Anal. 233 (2019), 167--247) via an energetic variational approach. Actually, the related problem can be seen as a transmission problem for the phase variable in the bulk and the corresponding variable on the boundary. The asymptotic behavior as the coefficient of the surface diffusion acting on the boundary phase variable goes to 0 is investigated. By this analysis we obtain a forward-backward dynamic boundary condition at the limit. We can deal with a general class of potentials having a double-well structure, including the non-smooth double-obstacle potential. We illustrate that the limit problem is well-posed by also proving a continuous dependence estimate. Moreover, in the case when the two graphs, in the bulk and on the boundary, exhibit the same growth, we show that the solution of the limit problem is more regular and we prove an error estimate for a suitable order of the diffusion parameter.
Source arXiv, 2208.00664
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.






ScienXe.org
» my Online CV
» Free

home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2025 - Scimetrica