Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3669
Articles: 2'599'751
Articles rated: 2609

16 March 2025
 
  » arxiv » 2208.00726

 Article overview



Proportional Fair Division of Multi-layered Cakes
Mohammad Azharuddin Sanpui ;
Date 1 Aug 2022
AbstractWe study the multi-layered cake cutting problem, where the multi-layered cake is divided among agents proportionally. This problem was initiated by Hosseini et al.(2020) under two constraints, one is contiguity and the other is feasibility. Basically we will show the existence of proportional multi-allocation for any number of agents with any number of preferences that satisfies contiguity and feasibility constraints using the idea of switching point for individual agent and majority agents. First we show that exact feasible multi-allocation is guaranteed to exist for two agents with two types of preferences. Second we see that we always get an envy-free multi-allocation that satisfies the feasibility and contiguity constraints for three agent with two types of preferences such that each agent has a share to each layer even without the knowledge of the unique preference of the third agent.
Source arXiv, 2208.00726
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.






ScienXe.org
» my Online CV
» Free

home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2025 - Scimetrica