Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3665
Articles: 2'599'751
Articles rated: 2609

19 January 2025
 
  » arxiv » 2301.00325

 Article overview



Improved inference for MCP-Mod approach for time-to-event endpoints with small sample sizes
Márcio A. Diniz ; Diego I. Gallardo ; Tiago M. Magalhães ;
Date 1 Jan 2023
AbstractThe Multiple Comparison Procedures with Modeling Techniques (MCP-Mod) framework has been recently approved by the U.S. Food and Administration and European Medicines Agency as fit-per-purpose for phase II studies. Nonetheless, this approach relies on the asymptotic properties of Maximum Likelihood (ML) estimators, which might not be reasonable for small sample sizes. In this paper, we derived improved ML estimators and correction for their covariance matrices in the censored Weibull regression model based on the corrective and preventive approaches. We performed two simulation studies to evaluate ML and improved ML estimators with their covariance matrices in (i) a regression framework (ii) the Multiple Comparison Procedures with Modeling Techniques framework. We have shown that improved ML estimators are less biased than ML estimators yielding Wald-type statistics that controls type I error without loss of power in both frameworks. Therefore, we recommend the use of improved ML estimators in the MCP-Mod approach to control type I error at nominal value for sample sizes ranging from 5 to 25 subjects per dose.
Source arXiv, 2301.00325
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.






ScienXe.org
» my Online CV
» Free

home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2025 - Scimetrica