Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3665
Articles: 2'599'751
Articles rated: 2609

20 January 2025
 
  » arxiv » 2301.00336

 Article overview



From discrete to continuous: Monochromatic 3-term arithmetic progressions
Torin Greenwood ; Jonathan Kariv ; Noah Williams ;
Date 1 Jan 2023
AbstractWe prove a known 2-coloring of the integers $[N] := {1,2,3,ldots,N}$ minimizes the number of monochromatic arithmetic 3-progressions under certain restrictions. A monochromatic arithmetic progression is a set of equally-spaced integers that are all the same color. Previous work by Parrilo, Robertson and Saracino conjectured an optimal coloring for large $N$ that involves 12 colored blocks. Here, we prove that the conjecture is optimal among anti-symmetric colorings with 12 or fewer colored blocks. We leverage a connection to the coloring of the continuous interval $[0,1]$ used by Parrilo, Robertson, and Saracino as well as by Butler, Costello and Graham. Our proof identifies classes of colorings with permutations, then counts the permutations using mixed integer linear programming.
Source arXiv, 2301.00336
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.






ScienXe.org
» my Online CV
» Free

home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2025 - Scimetrica