Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3665
Articles: 2'599'751
Articles rated: 2609

20 January 2025
 
  » arxiv » 2301.00403

 Article overview



Semantic Data Sourcing for 6G Edge Intelligence
Kaibin Huang ; Qiao Lan ; Zhiyan Liu ; Lin Yang ;
Date 1 Jan 2023
AbstractAs a new function of 6G networks, edge intelligence refers to the ubiquitous deployment of machine learning and artificial intelligence (AI) algorithms at the network edge to empower many emerging applications ranging from sensing to auto-pilot. To support relevant use cases, including sensing, edge learning, and edge inference, all require transmission of high-dimensional data or AI models over the air. To overcome the bottleneck, we propose a novel framework of SEMantic DAta Sourcing (SEMDAS) for locating semantically matched data sources to efficiently enable edge-intelligence operations. The comprehensive framework comprises new architecture, protocol, semantic matching techniques, and design principles for task-oriented wireless techniques. As the key component of SEMDAS, we discuss a set of machine learning based semantic matching techniques targeting different edge-intelligence use cases. Moreover, for designing task-oriented wireless techniques, we discuss different tradeoffs in SEMDAS systems, propose the new concept of joint semantics-and-channel matching, and point to a number of research opportunities. The SEMDAS framework not only overcomes the said communication bottleneck but also addresses other networking issues including long-distance transmission, sparse connectivity, high-speed mobility, link disruptions, and security. In addition, experimental results using a real dataset are presented to demonstrate the performance gain of SEMDAS.
Source arXiv, 2301.00403
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.






ScienXe.org
» my Online CV
» Free

home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2025 - Scimetrica