Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3665
Articles: 2'599'751
Articles rated: 2609

25 January 2025
 
  » arxiv » 2301.00418

 Article overview



Is word segmentation necessary for Vietnamese sentiment classification?
Duc-Vu Nguyen ; Ngan Luu-Thuy Nguyen ;
Date 1 Jan 2023
AbstractTo the best of our knowledge, this paper made the first attempt to answer whether word segmentation is necessary for Vietnamese sentiment classification. To do this, we presented five pre-trained monolingual S4- based language models for Vietnamese, including one model without word segmentation, and four models using RDRsegmenter, uitnlp, pyvi, or underthesea toolkits in the pre-processing data phase. According to comprehensive experimental results on two corpora, including the VLSP2016-SA corpus of technical article reviews from the news and social media and the UIT-VSFC corpus of the educational survey, we have two suggestions. Firstly, using traditional classifiers like Naive Bayes or Support Vector Machines, word segmentation maybe not be necessary for the Vietnamese sentiment classification corpus, which comes from the social domain. Secondly, word segmentation is necessary for Vietnamese sentiment classification when word segmentation is used before using the BPE method and feeding into the deep learning model. In this way, the RDRsegmenter is the stable toolkit for word segmentation among the uitnlp, pyvi, and underthesea toolkits.
Source arXiv, 2301.00418
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.






ScienXe.org
» my Online CV
» Free

home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2025 - Scimetrica