Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3665
Articles: 2'599'751
Articles rated: 2609

18 January 2025
 
  » arxiv » 2301.00496

 Article overview



Using Neural Networks to Learn the Jet Stream Forced Response from Natural Variability
Charlotte Connolly ; Elizabeth A. Barnes ; Pedram Hassanzadeh ; Mike Pritchard ;
Date 2 Jan 2023
AbstractTwo distinct features of anthropogenic climate change, warming in the tropical upper troposphere and warming at the Arctic surface, have competing effects on the mid-latitude jet stream’s latitudinal position, often referred to as a "tug-of-war". Studies that investigate the jet’s response to these thermal forcings show that it is sensitive to model type, season, initial atmospheric conditions, and the shape and magnitude of the forcing. Much of this past work focuses on studying a simulation’s response to external manipulation. In contrast, we explore the potential to train a convolutional neural network (CNN) on internal variability alone and then use it to examine possible nonlinear responses of the jet to tropospheric thermal forcing that more closely resemble anthropogenic climate change. Our approach leverages the idea behind the fluctuation-dissipation theorem, which relates the internal variability of a system to its forced response but so far has been only used to quantify linear responses. We train a CNN on data from a long control run of the CESM dry dynamical core and show that it is able to skillfully predict the nonlinear response of the jet to sustained external forcing. The trained CNN provides a quick method for exploring the jet stream sensitivity to a wide range of tropospheric temperature tendencies and, considering that this method can likely be applied to any model with a long control run, could lend itself useful for early stage experiment design.
Source arXiv, 2301.00496
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.






ScienXe.org
» my Online CV
» Free

home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2025 - Scimetrica