Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3665
Articles: 2'599'751
Articles rated: 2609

19 January 2025
 
  » arxiv » 2301.00595

 Article overview



Chains of Autoreplicative Random Forests for missing value imputation in high-dimensional datasets
Ekaterina Antonenko ; Jesse Read ;
Date 2 Jan 2023
AbstractMissing values are a common problem in data science and machine learning. Removing instances with missing values can adversely affect the quality of further data analysis. This is exacerbated when there are relatively many more features than instances, and thus the proportion of affected instances is high. Such a scenario is common in many important domains, for example, single nucleotide polymorphism (SNP) datasets provide a large number of features over a genome for a relatively small number of individuals. To preserve as much information as possible prior to modeling, a rigorous imputation scheme is acutely needed. While Denoising Autoencoders is a state-of-the-art method for imputation in high-dimensional data, they still require enough complete cases to be trained on which is often not available in real-world problems. In this paper, we consider missing value imputation as a multi-label classification problem and propose Chains of Autoreplicative Random Forests. Using multi-label Random Forests instead of neural networks works well for low-sampled data as there are fewer parameters to optimize. Experiments on several SNP datasets show that our algorithm effectively imputes missing values based only on information from the dataset and exhibits better performance than standard algorithms that do not require any additional information. In this paper, the algorithm is implemented specifically for SNP data, but it can easily be adapted for other cases of missing value imputation.
Source arXiv, 2301.00595
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.






ScienXe.org
» my Online CV
» Free

home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2025 - Scimetrica