Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3667
Articles: 2'599'751
Articles rated: 2609

09 February 2025
 
  » arxiv » 2301.01363

 Article overview



Gaussian-state Ansatz for the non-equilibrium dynamics of quantum spin lattices
Raphaël Menu ; Tommaso Roscilde ;
Date 3 Jan 2023
AbstractThe study of non-equilibrium dynamics is one of the most important challenges of modern quantum many-body physics, in relationship with fundamental questions in quantum statistical mechanics, as well as with the fields of quantum simulation and computing. In this work we propose a Gaussian Ansatz for the study of the nonequilibrium dynamics of quantum spin systems. Within our approach, the quantum spins are mapped onto Holstein-Primakoff bosons, such that a coherent spin state -- chosen as the initial state of the dynamics -- represents the bosonic vacuum. The state of the system is then postulated to remain a bosonic Gaussian state at all times, an assumption which is exact when the bosonic Hamiltonian is quadratic; and which is justified in the case of a nonlinear Hamiltonian if the boson density remains moderate. We test the accuracy of such an Ansatz in the paradigmatic case of the $S=1/2$ transverse-field Ising model, in one and two dimensions, initialized in a state aligned with the applied field. We show that the Gaussian Ansatz, when applied to the bosonic Hamiltonian with nonlinearities truncated to quartic order, is able to reproduce faithfully the evolution of the state, including its relaxation to the equilibrium regime, for fields larger than the critical field for the paramagnetic-ferromagnetic transition in the ground state. In particular the spatio-temporal pattern of correlations reconstructed via the Gaussian Ansatz reveals the dispersion relation of quasiparticle excitations, exhibiting the softening of the excitation gap upon approaching the critical field. Our results suggest that the Gaussian Ansatz correctly captures the essential effects of nonlinearities in quantum spin dynamics; and that it can be applied to the study of fundamental phenomena such as quantum thermalization and its breakdown.
Source arXiv, 2301.01363
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.






ScienXe.org
» my Online CV
» Free

home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2025 - Scimetrica