Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3667
Articles: 2'599'751
Articles rated: 2609

07 February 2025
 
  » arxiv » 2301.01443

 Article overview



A Quantum Approach for Stochastic Constrained Binary Optimization
Sarthak Gupta ; Vassilis Kekatos ;
Date 4 Jan 2023
AbstractAnalytical and practical evidence indicates the advantage of quantum computing solutions over classical alternatives. Quantum-based heuristics relying on the variational quantum eigensolver (VQE) and the quantum approximate optimization algorithm (QAOA) have been shown numerically to generate high-quality solutions to hard combinatorial problems, yet incorporating constraints to such problems has been elusive. To this end, this work puts forth a quantum heuristic to cope with stochastic binary quadratically constrained quadratic programs (QCQP). Identifying the strength of quantum circuits to efficiently generate samples from probability distributions that are otherwise hard to sample from, the variational quantum circuit is trained to generate binary-valued vectors to approximately solve the aforesaid stochastic program. The method builds upon dual decomposition and entails solving a sequence of judiciously modified standard VQE tasks. Tests on several synthetic problem instances using a quantum simulator corroborate the near-optimality and feasibility of the method, and its potential to generate feasible solutions for the deterministic QCQP too.
Source arXiv, 2301.01443
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.






ScienXe.org
» my Online CV
» Free

home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2025 - Scimetrica