Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3667
Articles: 2'599'751
Articles rated: 2609

15 February 2025
 
  » arxiv » 2301.01474

 Article overview



UAV aided Metaverse over Wireless Communications: A Reinforcement Learning Approach
Peiyuan Si ; Wenhan Yu ; Jun Zhao ; Kwok-Yan Lam ; Qing Yang ;
Date 4 Jan 2023
AbstractMetaverse is expected to create a virtual world closely connected with reality to provide users with immersive experience with the support of 5G high data rate communication technique. A huge amount of data in physical world needs to be synchronized to the virtual world to provide immersive experience for users, and there will be higher requirements on coverage to include more users into Metaverse. However, 5G signal suffers severe attenuation, which makes it more expensive to maintain the same coverage. Unmanned aerial vehicle (UAV) is a promising candidate technique for future implementation of Metaverse as a low-cost and high-mobility platform for communication devices. In this paper, we propose a proximal policy optimization (PPO) based double-agent cooperative reinforcement learning method for channel allocation and trajectory control of UAV to collect and synchronize data from the physical world to the virtual world, and expand the coverage of Metaverse services economically. Simulation results show that our proposed method is able to achieve better performance compared to the benchmark approaches.
Source arXiv, 2301.01474
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.






ScienXe.org
» my Online CV
» Free

home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2025 - Scimetrica