Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3667
Articles: 2'599'751
Articles rated: 2609

18 February 2025
 
  » arxiv » 2301.01495

 Article overview



Beckman Defense
A. V. Subramanyam ;
Date 4 Jan 2023
AbstractOptimal transport (OT) based distributional robust optimisation (DRO) has received some traction in the recent past. However, it is at a nascent stage but has a sound potential in robustifying the deep learning models. Interestingly, OT barycenters demonstrate a good robustness against adversarial attacks. Owing to the computationally expensive nature of OT barycenters, they have not been investigated under DRO framework. In this work, we propose a new barycenter, namely Beckman barycenter, which can be computed efficiently and used for training the network to defend against adversarial attacks in conjunction with adversarial training. We propose a novel formulation of Beckman barycenter and analytically obtain the barycenter using the marginals of the input image. We show that the Beckman barycenter can be used to train adversarially trained networks to improve the robustness. Our training is extremely efficient as it requires only a single epoch of training. Elaborate experiments on CIFAR-10, CIFAR-100 and Tiny ImageNet demonstrate that training an adversarially robust network with Beckman barycenter can significantly increase the performance. Under auto attack, we get a a maximum boost of 10\% in CIFAR-10, 8.34\% in CIFAR-100 and 11.51\% in Tiny ImageNet. Our code is available at this https URL
Source arXiv, 2301.01495
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.






ScienXe.org
» my Online CV
» Free

home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2025 - Scimetrica