Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3667
Articles: 2'599'751
Articles rated: 2609

07 February 2025
 
  » arxiv » 2301.01543

 Article overview



A note on the variance in principal component regression
Bert van der Veen ;
Date 4 Jan 2023
AbstractPrincipal component regression is a popular method to use when the predictor matrix in a regression is of reduced column rank. It has been proposed to stabilize computation under such conditions, and to improve prediction accuracy by reducing variance of the least squares estimator for the regression slopes. However, it presents the added difficulty of having to determine which principal components to include in the regression. I provide arguments against selecting the principal components by the magnitude of their associated eigenvalues, by examining the estimator for the residual variance, and by examining the contribution of the residual variance to the variance of the estimator for the regression slopes. I show that when a principal component is omitted from the regression that is important in explaining the response variable, the residual variance is overestimated, so that the variance of the estimator for the regression slopes can be higher than that of the ordinary least squares estimator.
Source arXiv, 2301.01543
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.






ScienXe.org
» my Online CV
» Free

home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2025 - Scimetrica