Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3667
Articles: 2'599'751
Articles rated: 2609

07 February 2025
 
  » arxiv » 2301.01606

 Article overview



Predicting Learning Interactions in Social Learning Networks: A Deep Learning Enabled Approach
Rajeev Sahay ; Serena Nicoll ; Minjun Zhang ; Tsung-Yen Yang ; Carlee Joe-Wong ; Kerrie A. Douglas ; Christopher G Brinton ;
Date 3 Jan 2023
AbstractWe consider the problem of predicting link formation in Social Learning Networks (SLN), a type of social network that forms when people learn from one another through structured interactions. While link prediction has been studied for general types of social networks, the evolution of SLNs over their lifetimes coupled with their dependence on which topics are being discussed presents new challenges for this type of network. To address these challenges, we develop a series of autonomous link prediction methodologies that utilize spatial and time-evolving network architectures to pass network state between space and time periods, and that models over three types of SLN features updated in each period: neighborhood-based (e.g., resource allocation), path-based (e.g., shortest path), and post-based (e.g., topic similarity). Through evaluation on six real-world datasets from Massive Open Online Course (MOOC) discussion forums and from Purdue University, we find that our method obtains substantial improvements over Bayesian models, linear classifiers, and graph neural networks, with AUCs typically above 0.91 and reaching 0.99 depending on the dataset. Our feature importance analysis shows that while neighborhood and path-based features contribute the most to the results, post-based features add additional information that may not always be relevant for link prediction.
Source arXiv, 2301.01606
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.






ScienXe.org
» my Online CV
» Free

home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2025 - Scimetrica