Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3667
Articles: 2'599'751
Articles rated: 2609

07 February 2025
 
  » arxiv » 2301.01642

 Article overview



CI-GNN: A Granger Causality-Inspired Graph Neural Network for Interpretable Brain Network-Based Psychiatric Diagnosis
Kaizhong Zheng ; Shujian Yu ; Badong Chen ;
Date 4 Jan 2023
AbstractThere is a recent trend to leverage the power of graph neural networks (GNNs) for brain-network based psychiatric diagnosis, which,in turn, also motivates an urgent need for psychiatrists to fully understand the decision behavior of the used GNNs. However, most of the existing GNN explainers are either post-hoc in which another interpretive model needs to be created to explain a well-trained GNN, or do not consider the causal relationship between the extracted explanation and the decision, such that the explanation itself contains spurious correlations and suffers from weak faithfulness. In this work, we propose a granger causality-inspired graph neural network (CI-GNN), a built-in interpretable model that is able to identify the most influential subgraph (i.e., functional connectivity within brain regions) that is causally related to the decision (e.g., major depressive disorder patients or healthy controls), without the training of an auxillary interpretive network. CI-GNN learns disentangled subgraph-level representations {alpha} and {eta} that encode, respectively, the causal and noncausal aspects of original graph under a graph variational autoencoder framework, regularized by a conditional mutual information (CMI) constraint. We theoretically justify the validity of the CMI regulation in capturing the causal relationship. We also empirically evaluate the performance of CI-GNN against three baseline GNNs and four state-of-the-art GNN explainers on synthetic data and two large-scale brain disease datasets. We observe that CI-GNN achieves the best performance in a wide range of metrics and provides more reliable and concise explanations which have clinical evidence.
Source arXiv, 2301.01642
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.






ScienXe.org
» my Online CV
» Free

home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2025 - Scimetrica