Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3667
Articles: 2'599'751
Articles rated: 2609

07 February 2025
 
  » arxiv » 2301.01644

 Article overview



Dynamic gravitational excitation of structural resonances in the hertz regime using two rotating bars
Tobias Brack ; Jonas Fankhauser ; Bernhard Zybach ; Fadoua Balabdaoui ; Stefan Blunier ; Stephan Kaufmann ; Francesco Palmegiano ; Donat Scheiwiller ; Jean-Claude Tomasina ; Jürg Dual ;
Date 4 Jan 2023
AbstractWith the planning of new ambitious gravitational wave (GW) observatories, fully controlled laboratory experiments on dynamic gravitation become more and more important. Such new experiments can provide new insights in potential dynamic effects such as gravitational shielding or energy flow and might contribute to bringing light into the mystery still surrounding gravity. Here we present a laboratory-based transmitter-detector experiment using two rotating bars as transmitter and a 42 Hz, high-Q bending beam resonator as detector. Using a highly precise phase control to synchronize the rotating bars, a dynamic gravitational field emerges that excites the bending motion with amplitudes up to 100 nm/s or 370 pm, which is a factor of 500 above the thermal noise. The two-transmitter design enables the investigation of different setup configurations. The detector movement is measured optically, using three commercial interferometers. Acoustical, mechanical, and electrical isolation, a temperature-stable environment, and lock-in detection are central elements of the setup. The moving load response of the detector is numerically calculated based on Newton’s law of gravitation via discrete volume integration, showing excellent agreement between measurement and theory both in amplitude and phase. The near field gravitational energy transfer is 10$^{25}$ times higher than what is expected from GW analysis.
Source arXiv, 2301.01644
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.






ScienXe.org
» my Online CV
» Free

home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2025 - Scimetrica