Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3652
Articles: 2'545'386
Articles rated: 2609

24 June 2024
 
  » arxiv » 2302.00164

 Article overview



Detection of Tomato Ripening Stages using Yolov3-tiny
Gerardo Antonio Alvarez Hernández ; Juan Carlos Olguin ; Juan Irving Vasquez ; Abril Valeria Uriarte ; Maria Claudia Villicaña Torres ;
Date 1 Feb 2023
AbstractOne of the most important agricultural products in Mexico is the tomato (Solanum lycopersicum), which occupies the 4th place national most produced product . Therefore, it is necessary to improve its production, building automatic detection system that detect, classify an keep tacks of the fruits is one way to archieve it. So, in this paper, we address the design of a computer vision system to detect tomatoes at different ripening stages. To solve the problem, we use a neural network-based model for tomato classification and detection. Specifically, we use the YOLOv3-tiny model because it is one of the lightest current deep neural networks. To train it, we perform two grid searches testing several combinations of hyperparameters. Our experiments showed an f1-score of 90.0% in the localization and classification of ripening stages in a custom dataset.
Source arXiv, 2302.00164
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.






ScienXe.org
» my Online CV
» Free

home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica