forgot password?
register here
Research articles
  search articles
  reviews guidelines
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
Members: 3652
Articles: 2'545'386
Articles rated: 2609

24 June 2024
  » arxiv » 2302.00188

 Article overview

Deep Learning Approach to Predict Hemorrhage in Moyamoya Disease
Meng Zhao ; Yonggang Ma ; Qian Zhang ; Jizong Zhao ;
Date 1 Feb 2023
AbstractObjective: Reliable tools to predict moyamoya disease (MMD) patients at risk for hemorrhage could have significant value. The aim of this paper is to develop three machine learning classification algorithms to predict hemorrhage in moyamoya disease. Methods: Clinical data of consecutive MMD patients who were admitted to our hospital between 2009 and 2015 were reviewed. Demographics, clinical, radiographic data were analyzed to develop artificial neural network (ANN), support vector machine (SVM), and random forest models. Results: We extracted 33 parameters, including 11 demographic and 22 radiographic features as input for model development. Of all compared classification results, ANN achieved the highest overall accuracy of 75.7% (95% CI, 68.6%-82.8%), followed by SVM with 69.2% (95% CI, 56.9%-81.5%) and random forest with 70.0% (95% CI, 57.0%-83.0%). Conclusions: The proposed ANN framework can be a potential effective tool to predict the possibility of hemorrhage among adult MMD patients based on clinical information and radiographic features.
Source arXiv, 2302.00188
Services Forum | Review | PDF | Favorites   
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
of broad interest:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.
» my Online CV
» Free

home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica