Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3652
Articles: 2'545'386
Articles rated: 2609

24 June 2024
 
  » arxiv » 2302.00197

 Article overview



Minute-cadence Observations of the LAMOST Fields with the TMTS: III. Statistic Study of the Flare Stars from the First Two Years
Qichun Liu ; Jie Lin ; Xiaofeng Wang ; Shenghong Gu ; Jianrong Shi ; Liyun Zhang ; Gaobo Xi ; Jun Mo ; Yongzhi Cai ; Liyang Chen ; Zhihao Chen ; Fangzhou Guo ; Xiaojun Jiang ; Gaici Li ; Wenxiong Li ; Han Lin ; Weili Lin ; Jialian Liu ; Cheng Miao ; Xiaoran Ma ; Haowei Peng ; Danfeng Xiang ; Shengyu Yan ; Jicheng Zhang ; Xinhan Zhang ;
Date 1 Feb 2023
AbstractTsinghua University-Ma Huateng Telescopes for Survey (TMTS) aims to detect fast-evolving transients in the Universe, which has led to the discovery of thousands of short-period variables and eclipsing binaries since 2020. In this paper, we present the observed properties of 125 flare stars identified by the TMTS within the first two years, with an attempt to constrain their eruption physics. As expected, most of these flares were recorded in late-type red stars with G_BP-G_RP > 2.0 mag, however, the flares associated with bluer stars tend to be on average more energetic and have broader profiles. The peak flux (F_peak) of the flare is found to depend strongly on the equivalent duration (ED) of the energy release, i.e., F_peak propto ED^{0.72 pm 0.04}, which is consistent with results derived from the Kepler and Evryscope samples. This relation is likely related to the magnetic loop emission, while -- for the more popular non-thermal electron heating model -- a specific time evolution may be required to generate this relation. We notice that flares produced by hotter stars have a flatter F_peak propto ED relation compared to that from cooler stars. This is related to the statistical discrepancy in light-curve shape of flare events with different colors. In spectra from LAMOST, we find that flare stars have apparently stronger H alpha emission than inactive stars, especially at the low temperature end, suggesting that chromospheric activity plays an important role in producing flares. On the other hand, the subclass having frequent flares are found to show H alpha emission of similar strength in their spectra to that recorded with only a single flare but similar effective temperature, implying that the chromospheric activity may not be the only trigger for eruptions.
Source arXiv, 2302.00197
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.






ScienXe.org
» my Online CV
» Free

home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica