Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3652
Articles: 2'545'386
Articles rated: 2609

24 June 2024
 
  » arxiv » 2302.00219

 Article overview



Knowledge Distillation on Graphs: A Survey
Yijun Tian ; Shichao Pei ; Xiangliang Zhang ; Chuxu Zhang ; Nitesh V. Chawla ;
Date 1 Feb 2023
AbstractGraph Neural Networks (GNNs) have attracted tremendous attention by demonstrating their capability to handle graph data. However, they are difficult to be deployed in resource-limited devices due to model sizes and scalability constraints imposed by the multi-hop data dependency. In addition, real-world graphs usually possess complex structural information and features. Therefore, to improve the applicability of GNNs and fully encode the complicated topological information, knowledge distillation on graphs (KDG) has been introduced to build a smaller yet effective model and exploit more knowledge from data, leading to model compression and performance improvement. Recently, KDG has achieved considerable progress with many studies proposed. In this survey, we systematically review these works. Specifically, we first introduce KDG challenges and bases, then categorize and summarize existing works of KDG by answering the following three questions: 1) what to distillate, 2) who to whom, and 3) how to distillate. Finally, we share our thoughts on future research directions.
Source arXiv, 2302.00219
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.






ScienXe.org
» my Online CV
» Free

home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica