Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3652
Articles: 2'545'386
Articles rated: 2609

24 June 2024
 
  » arxiv » 2302.00221

 Article overview



Studying phonon coherence with a quantum sensor
Agnetta Y. Cleland ; E. Alex Wollack ; Amir H. Safavi-Naeini ;
Date 1 Feb 2023
AbstractIn the field of quantum technology, nanomechanical oscillators offer a host of useful properties given their compact size, long lifetimes, and ability to detect force and motion. Their integration with superconducting quantum circuits shows promise for hardware-efficient computation architectures and error-correction protocols based on superpositions of mechanical coherent states. One limitation of this approach is decoherence processes affecting the mechanical oscillator. Of particular interest are two-level system (TLS) defects in the resonator host material, which have been widely studied in the classical domain, primarily via measurements of the material loss tangent. In this manuscript, we use a superconducting qubit as a quantum sensor to perform phonon number-resolved measurements on a phononic crystal cavity. This enables a high-resolution study of mechanical dissipation and dephasing in coherent states of variable size (mean phonon number $ avgsimeq1-10$). We observe nonexponential energy decay and a state size-dependent reduction of the dephasing rate, which we attribute to interactions with TLS. Using a numerical model, we reproduce the energy decay signatures (and to a lesser extent, the dephasing signatures) via mechanical emission into a small ensemble ($N=5$) of saturable and rapidly dephasing TLS. Our findings comprise a detailed examination of TLS-induced phonon decoherence in the quantum regime.
Source arXiv, 2302.00221
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.






ScienXe.org
» my Online CV
» Free

home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica