Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3652
Articles: 2'545'386
Articles rated: 2609

24 June 2024
 
  » arxiv » 2302.00233

 Article overview



Asymptotic estimates of projection and Sidon constants for spaces of functions on the Boolean cube
Andreas Defant ; Daniel Galicer ; Martín Mansilla ; Mieczysław Mastyło ; Santiago Muro ;
Date 1 Feb 2023
AbstractWe investigate the projection constant $oldsymbol{lambda}ig(mathcal{B}_{mathcal{S}}^Nig)$ of the finite-dimensional Banach space $mathcal{B}_{mathcal{S}}^N$ of all real-valued functions defined on the $N$-dimensional Boolean cube ${-1, +1}^N$ that have Fourier-Walsh expansions supported on a~family $mathcal{S}$ of subsets of ${1, ldots, N}$. We combine ideas and tools from Fourier analysis, combinatorics, probability, and number theory to derive exact formulas and asymptotic estimates of $oldsymbol{lambda}ig(mathcal{B}_{mathcal{S}}^Nig)$ for special types of families $mathcal{S}$ depending on the dimension $N$ of the Boolean cube and other complexity parameters of $mathcal{S}$. One of the main results states that if $mathcal{S}= {S:, ext{card}(S) = d}$ or $mathcal{S}= {S: , ext{card}(S) leq d}$, then $N^{-d/2} oldsymbol{lambda}ig(mathcal{B}_{mathcal{S}}^Nig) o frac{1}{2pi} int_{mathbb{R}} |P_d(t)| exp(-t^2/2),d!t$ as $N o infty$, where $P_d$ is a concrete real polynomial of one variable. Using local Banach space theory, we show that the Sidon, Gordon-Lewis and the projection constants of each Banach space $mathcal{B}_{mathcal{ S}}^N$ are closely related.
Source arXiv, 2302.00233
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.






ScienXe.org
» my Online CV
» Free

home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica